Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Am Med Inform Assoc ; 30(6): 1022-1031, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2265425

ABSTRACT

OBJECTIVE: To develop a computable representation for medical evidence and to contribute a gold standard dataset of annotated randomized controlled trial (RCT) abstracts, along with a natural language processing (NLP) pipeline for transforming free-text RCT evidence in PubMed into the structured representation. MATERIALS AND METHODS: Our representation, EvidenceMap, consists of 3 levels of abstraction: Medical Evidence Entity, Proposition and Map, to represent the hierarchical structure of medical evidence composition. Randomly selected RCT abstracts were annotated following EvidenceMap based on the consensus of 2 independent annotators to train an NLP pipeline. Via a user study, we measured how the EvidenceMap improved evidence comprehension and analyzed its representative capacity by comparing the evidence annotation with EvidenceMap representation and without following any specific guidelines. RESULTS: Two corpora including 229 disease-agnostic and 80 COVID-19 RCT abstracts were annotated, yielding 12 725 entities and 1602 propositions. EvidenceMap saves users 51.9% of the time compared to reading raw-text abstracts. Most evidence elements identified during the freeform annotation were successfully represented by EvidenceMap, and users gave the enrollment, study design, and study Results sections mean 5-scale Likert ratings of 4.85, 4.70, and 4.20, respectively. The end-to-end evaluations of the pipeline show that the evidence proposition formulation achieves F1 scores of 0.84 and 0.86 in the adjusted random index score. CONCLUSIONS: EvidenceMap extends the participant, intervention, comparator, and outcome framework into 3 levels of abstraction for transforming free-text evidence from the clinical literature into a computable structure. It can be used as an interoperable format for better evidence retrieval and synthesis and an interpretable representation to efficiently comprehend RCT findings.


Subject(s)
COVID-19 , Comprehension , Humans , Natural Language Processing , PubMed
2.
J Am Med Inform Assoc ; 28(8): 1703-1711, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1217859

ABSTRACT

OBJECTIVE: We introduce Medical evidence Dependency (MD)-informed attention, a novel neuro-symbolic model for understanding free-text clinical trial publications with generalizability and interpretability. MATERIALS AND METHODS: We trained one head in the multi-head self-attention model to attend to the Medical evidence Ddependency (MD) and to pass linguistic and domain knowledge on to later layers (MD informed). This MD-informed attention model was integrated into BioBERT and tested on 2 public machine reading comprehension benchmarks for clinical trial publications: Evidence Inference 2.0 and PubMedQA. We also curated a small set of recently published articles reporting randomized controlled trials on COVID-19 (coronavirus disease 2019) following the Evidence Inference 2.0 guidelines to evaluate the model's robustness to unseen data. RESULTS: The integration of MD-informed attention head improves BioBERT substantially in both benchmark tasks-as large as an increase of +30% in the F1 score-and achieves the new state-of-the-art performance on the Evidence Inference 2.0. It achieves 84% and 82% in overall accuracy and F1 score, respectively, on the unseen COVID-19 data. CONCLUSIONS: MD-informed attention empowers neural reading comprehension models with interpretability and generalizability via reusable domain knowledge. Its compositionality can benefit any transformer-based architecture for machine reading comprehension of free-text medical evidence.


Subject(s)
Artificial Intelligence , Clinical Trials as Topic , Information Storage and Retrieval/methods , Models, Neurological , Natural Language Processing , COVID-19 , Computer Simulation , Data Mining , Humans , Software
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.06.438536

ABSTRACT

ABSTRACT Computational tools for integrative analyses of diverse single-cell experiments are facing formidable new challenges including dramatic increases in data scale, sample heterogeneity, and the need to informatively cross-reference new data with foundational datasets. Here, we present SCALEX, a deep-learning method that integrates single-cell data by projecting cells into a batch-invariant, common cell-embedding space in a truly online manner ( i.e. , without retraining the model). SCALEX substantially outperforms online iNMF and other state-of-the-art non-online integration methods on benchmark single-cell datasets of diverse modalities, (e.g., scRNA-seq, scATAC-seq), especially for datasets with partial overlaps, accurately aligning similar cell populations while retaining true biological differences. We showcase SCALEX’s advantages by constructing continuously expandable single-cell atlases for human, mouse, and COVID-19 patients, each assembled from diverse data sources and growing with every new data. The online data integration capacity and superior performance makes SCALEX particularly appropriate for large-scale single-cell applications to build-upon previously hard-won scientific insights.


Subject(s)
COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-398163.v1

ABSTRACT

Single-cell RNA-seq and ATAC-seq analyses have been widely applied to decipher cell-type and regulation complexities. However, experimental conditions often confound biological variations when comparing data from different samples. For integrative single-cell data analysis, we have developed SCALEX, a deep generative framework that maps cells into a generalized, batch-invariant cell-embedding space. We demonstrate that SCALEX accurately and efficiently integrates heterogenous single-cell data using multiple benchmarks. It outperforms competing methods, especially for datasets with partial overlaps, accurately aligning similar cell populations while r,etaining true biological differences. We demonstrate the advantages of SCALEX by constructing continuously expandable single-cell atlases for human, mouse, and COVID-19, which were assembled from multiple data sources and can keep growing through the inclusion of new incoming data. Analyses based on these atlases revealed the complex cellular landscapes of human and mouse tissues and identified multiple peripheral immune subtypes associated with COVID-19 disease severity.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL